Neutrophil defensins enhance lung epithelial wound closure and mucin gene expression in vitro.
نویسندگان
چکیده
Human airways are frequently exposed to potentially harmful agents that cause tissue injury. Upon such injury, a repair process is initiated that comprises cell migration, proliferation, and differentiation. We have previously shown that human neutrophil defensins (human neutrophil peptides 1-3 [HNP1-3]) induce airway epithelial cell proliferation. Because of the role of cell proliferation in epithelial wound repair, we investigated the effect of HNP1-3 on airway epithelial wound closure and mucin gene expression in vitro. Using NCI-H292 airway epithelial cell cultures, we demonstrated that HNP1-3 cause a dose- and time-dependent increase of wound closure as well as increased cell migration. Furthermore, HNP1-3 caused a biphasic activation of the mitogen-activated protein kinase extracellular-regulated kinase 1 and 2 (ERK1/2). Both the effects of HNP1-3 on wound closure and ERK1/2 activation were blocked by specific inhibitors of the mitogen-activated protein kinase kinase MEK, whereas inhibitors of epidermal growth factor receptor tyrosine kinase, phosphatidylinositol 3-kinase, and Src did block defensin-enhanced wound closure but not ERK1/2 activation. Finally, HNP1-3 increased mRNA encoding the mucins MUC5B and MUC5AC, suggesting a role for defensins in mucous cell differentiation. These results indicate that neutrophil defensins increase epithelial wound repair in vitro, which involves migration and proliferation, and mucin production. Neutrophil defensin-enhanced wound repair appears to require epidermal growth factor receptor activation and downstream signaling pathways.
منابع مشابه
Neutrophil serine proteinases and defensins in chronic obstructive pulmonary disease: effects on pulmonary epithelium.
Neutrophils have the capacity to accumulate in high numbers in the lung during infection and inflammation. Because they play an important role in host defence against infection, but may also cause tissue injury, these cells are thought to be involved in the pathogenesis of various inflammatory lung disorders, including chronic bronchitis and chronic obstructive pulmonary disease. Neutrophil pro...
متن کاملNeutrophil elastase increases MUC5AC mRNA and protein expression in respiratory epithelial cells.
Chronic neutrophil-predominant inflammation and hypersecretion of mucus are common pathophysiological features of cystic fibrosis, chronic bronchitis, and viral- or pollution-triggered asthma. Neutrophils release elastase, a serine protease, that causes increased mucin production and secretion. The molecular mechanisms of elastase-induced mucin production are unknown. We hypothesized that as pa...
متن کاملMMP7 Shedding of Syndecan-1 Facilitates Re-Epithelialization by Affecting α2β1 Integrin Activation
BACKGROUND Lung injury promotes the expression of matrix metalloproteinase-7 (MMP7, matrilysin), which is required for neutrophil recruitment and re-epithelialization. MMP7 governs the lung inflammatory response through the shedding of syndecan-1. Because inflammation and repair are related events, we evaluated the role of syndecan-1 shedding in lung re-epithelialization. METHODOLOGY/PRINCIPA...
متن کاملRegulation of SLPI and elafin release from bronchial epithelial cells by neutrophil defensins.
Secretory leukocyte proteinase inhibitor (SLPI) is a serine proteinase inhibitor that is produced locally in the lung by cells of the submucosal bronchial glands and by nonciliated epithelial cells. Its main function appears to be the inhibition of neutrophil elastase (NE). Recently, NE was found to enhance SLPI mRNA levels while decreasing SLPI protein release in airway epithelial cells. Furth...
متن کاملAntimicrobial peptides in lung transplant recipients with bronchiolitis obliterans syndrome.
Mechanisms other than classical alloimmunity are implicated in the pathogenesis of bronchiolitis obliterans syndrome (BOS). It was hypothesised that antimicrobial peptides (AMPs), elements of the innate immune response, have a role in BOS pathogenesis. Pulmonary expression of the neutrophil-derived AMPs human cathelicidin (hCAP)-18/LL-37 and alpha-defensins (human neutrophil peptides (HNP) 1-3)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of respiratory cell and molecular biology
دوره 30 2 شماره
صفحات -
تاریخ انتشار 2004